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ABSTRACT

The majority of current societal and economic needs world-wide are met by the existing

networked, civil infrastructure. Because the cost of managing such infrastructure is high and 

increases with time, risk-informed decision making is essential for those with management 

responsibilities for these systems. To address such concerns, a methodology that accounts for 

new information, deterioration, component models, component importance, group importance, 

network reliability, hierarchical structure organization, and efficiency concerns has been 

developed. This methodology analyzes the use of new information through the lens of adaptive 

Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge 

models, and time-variant component importance are investigated for a specific network. 

Furthermore, both bridge and pipeline networks are studied for group and component 

importance, as well as for hierarchical structures in the context of specific networks. Efficiency

is the primary driver throughout this study. With this risk-informed approach, those responsible 

for management can address deteriorating infrastructure networks in an organized manner.
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1. INTRODUCTION

Current US infrastructure needs are largely met by existing systems, e.g. power lines, 

transportation networks, water and gas pipelines, etc. However, the state of these systems is

variable. Moreover, hazards such as seismic events, tornadoes, storm surge, and even corrosion, 

degrade the ability of these systems to perform. Due to the weakening of infrastructure and 

limited resources, governing bodies must determine which components are critical for the 

continuing support of network function. The American Society of Civil Engineers (ASCE) has 

rated the overall state of US infrastructure at D+, and the state of US bridges at C+ (ASCE 

2013). An estimated $3.6 trillion (USD) would be required to improve this infrastructure to a

level of “B” by 2020. While the grades for both general and bridge infrastructure have improved 

since the 2009 report card, the required investment has increased by $1.3 trillion, which is well 

above the inflation rate. 

A related concern is that the average age of US bridges is 42 years. Because most bridges have a 

design life of 50 years, determining how structural response is affected by aging is particularly 

important. Since there are models for fragilities of bridges, pipeline sections, etc., one could view 

such components individually, but this would not accurately describe their role in the system. 

Since network analysis for these purposes rapidly becomes computationally expensive with the 

problem size, particularly for low probability events with simulation-based methods, e.g. crude-

Monte Carlo Simulation (MCS), one must be careful with both network formulation and 

analysis. Additionally, there is a need to use field information in this process, either in 

constructing the initial state or updating the current state of the system, e.g. Bayesian parameter 

estimation or reliability updating. For these concerns, one must consider how to update the 

network state and how to perform the network analysis.

A framework that addresses these issues is developed, which accounts for deterioration, network 

complexity and size, component models, sources of correlations, efficiency issues, and 

adaptedness. After a major event, such as seismic hazards, infrastructure systems may become 

compromised in unintuitive scenarios. Because such networks are essential for emergency 

response, guaranteeing that the status of the network (i.e., the connectivity between special 

locations) is efficiently and accurately calculated is essential. A general framework relevant for 

performing this type of analysis, which is applicable to all infrastructure, is shown in Figure 1.
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Figure 1.  General Network Model Description.

There are three basic inputs to this framework. The first is the deterioration map, which 

determines how the deterioration parameters are spatially distributed. The second is the hazard 

model, i.e., the attenuation rule, the “hazard map.” The last is the data specific to the application, 

e.g., bridge data, pipeline locations. In cases where the infrastructure contains a large range of 

components, e.g., bridge networks, representative classes may be used to represent groups of 

components to diminish computational expenses. The network realization describes the topology 

and how the distinct components (e.g. tunnels, culverts) are located within the topology. 

Using these inputs, a component-driven network model is created using the following approach. 

While the component fragilities describe the likelihood of the limit states subject to hazard, e.g.,

seismicity and/or storm surge, the effects of time variance must also be handled. For this 

analysis, time variance is handled by “Fragility Increment Functions” (FIFs), which rescale the 

fragilities using ratios that account for the structural configuration and the environmental factors.

The rest of the network model is driven by these high-information-content component models, 

resulting in a component-driven network model. Accounting for the individual components and 

the network realization, the sources of correlation between components failures are directly 

found. Using all of these inputs and techniques, a component-driven network model is created.
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Multi-scale approaches (i.e., those with many components per link) using hierarchical structures 

to account for scale, are used together with the network analysis, (i.e., the selective-Recursive 

Decomposition Algorithm, or “S-RDA”) to diminish computational costs. Selected outputs 

identify the important aspects of the network model. These outputs include component 

importance measures, e.g., Conditional Probability Importance Measures, and the network 

disconnection reliability. When a multi-scale, hierarchical approach is used, the outputs identify 

a hierarchy of component groups and associated group importance metrics (GIMs).

The next three sections of this report demonstrate the key features of this framework that were 

developed during this effort, through five analysis examples. The first example demonstrates the 

concept of making such a methodology adaptive as new information from the field becomes 

available. Second, an example of the methodology is shown that uses a multi-scale, time-variant, 

realistic, seismic, bridge network. In this example, representative bridges are used to define 

classes into which the bridges are grouped, with many representative bridges located on each 

link. In the third example, a multi-scale approach that uses hierarchical structures to diminish the 

computational costs of network analysis is demonstrated. The fourth example explores the 

further uses of such hierarchical structures for describing the network. In the final example, a 

case study using a time-variant pipeline is presented. The final two sections of this report contain 

the anticipated impacts of this research and its conclusions. 
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1.1 NOMENCLATURE

ASCE American Society of Civil Engineers

AHSIA Automated Hierarchical Structure Identification Algorithm

Caltrans California Department of Transportation

CE Kullback-Leibler Cross Entropy

CE-AIS-GM Cross Entropy-based Adaptive Importance Sampling using Gaussian Mixture

CE-AIS-SG Cross Entropy-based Adaptive Importance Sampling using Single Gaussian

c.o.v. Coefficient of Variation

CPIM Conditional Probability Importance Measures

FIF Fragility Increment Function

FORM First-Order Reliability Method

GIM Group Importance Measure

IS Importance Sampling

iHL-RF improved Hasofer-Lind Rackwitz-Fissler

JFK John F. Kennedy International Airport

LA Los Angeles Metropolitan Area

LAX Los Angeles International Airport

LP Linear Programming

MCS Monte Carlo Simulation

NA Not Applicable

Ncut Normalized cut

PAM Partition Around Medoids

PGV Peak Ground Velocity

PSA Pseudo-Spectral Acceleration 

RC Reinforced Concrete

RDA Recursive Decomposition Algorithm

Sa Spectral Acceleration

SORM Second-Order Reliability Method

S-RDA Selective-Recursive Decomposition Algorithm

US United States

USD United States Dollars
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2. DETAILED DESCRIPTION OF EXPERIMENT/METHOD

2.1  CE-BASED ADAPTIVE USING A GAUSSIAN MIXTURE

An adaptive importance sampling (IS) approach is developed (Kurtz and Song 2013) by 

expanding an existing adaptive IS approach (Song, et al., 2006) that finds a near-optimal IS 

density by minimizing Kullback-Leibler Cross Entropy (CE) via pre-sampling (Rubinstein and 

Kroese 2004). Here, CE quantifies the difference between the absolute best sampling density and 

the current IS density; however, the existing approach used a uni-modal distribution of 

statistically independent random variables. While this limits its use, such an approach is absent 

from structural reliability, although entropy maximization has been used. Such a CE-based 

approach allows the general ability to find an optimal IS density for both structural reliability, 

which is a more general field that seeks to obtain the probability of the system failure event of 

various engineering applications, and Bayesian inference (Box and Tiao 1992). For such 

situations, a new adaptive IS approach is developed by incorporating a nonparametric 

multimodal density function, i.e., a Gaussian mixture (Bishop 2006), into the aforementioned CE 

approach. The background for this new approach is discussed below.

Because management entities handle a large amount of new data over time, network 

methodologies must be employed to manage that data. Bayesian inference is used to update a 

network methodology. While there are many nuances with this approach, it uses two 

distributions of data: 1) the “prior” distribution, and 2) the distribution of experimental 

observations. Typically, importance sampling (IS) is used.  IS is a variance reduction technique 

that presents a significant computational benefit to crude-MCS using an alternative density 

(Shinozuka 1983, Engelund and Rackwitz 1993, Melchers 1999). However, there may arise a 

situation in which the “prior” has non-negligible information content, and the distribution centers 

for the prior and the experiments are not near one another. For this case, the optimal IS density 

would lie at an ambiguous location between the densities. To handle such cases, the general 

adaptive IS method described earlier was developed for structural reliability problems. This 

method does not require application-specific information, and performs well with typical 

applications. Furthermore, this approach allows the optimal IS density for Bayesian updating to 

be found adaptively.

Typically, structural reliability problems are attempted using the First- or Second-Order 

Reliability Method (FORM or SORM) (Der Kiureghian 2005). First, the point of maximum 

likelihood in the failure domain, i.e., the “design point,” is located, which is typically found 

using a nonlinear constrained optimization algorithm (e.g. the improved Hasofer-Lind Rackwitz-

Fissler (iHL-RF) algorithm (Zhang and Der Kiureghian 1995). FORM or SORM is used to 

approximate the failure domain with a linear half-plane or paraboloid, respectively; however, 

these methods may not always function appropriately, indicating that sampling methods ought to 
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be used. Due to its straightforward application, the first attempted sampling method is crude-

MCS; however, the computational costs for those rare events described by computationally 

expensive limit state functions, e.g., those relying on finite element analysis, may be exceedingly 

large. IS is then attempted. To find an IS density, a Gaussian density is used, for which the mean 

vector is located using iHL-RF (Fujita and Rackwitz 1988, Melchers 1989). However, this 

approach cannot address either multiple design points (Der Kiureghian and Dakessian 1998) or 

the numerical issues affecting such an optimization (Liu and Der Kiureghian 1991).

To this end, a novel adaptive IS approach has been developed. The aforementioned adaptive IS

approach is used to 1) find the regions that contribute most significantly to the failure event, and 

2) compute the failure probability while minimizing the variance. Section 2.1.1 presents the rules 

that specifically govern the proposed method. 

2.1.1 METHODOLOGY

This approach extends the method developed by Rubinstien and Kroese (2004). (For a summary

of this approach see Kurtz and Song, 2013.) The Kullback Liebler CE, D(f(x),h(x)) between two 

functions f(x) and h(x) is defined as

* * * *( ( ), ( ; )) ( ) ln ( ) ( ) ln ( ; )D p h p p d p h d  x x v x x x x x v x (1.1)

where p*(x) is the optimal density, and h(x;v) is the IS density with parameters v. Due to the 

form p*(x), it cannot be sampled directly, but can be found through optimization. The resulting 

optimization one uses to obtain updating rules for h(x;v) with i-th variable values, becomes

1

1
( ) ( ; , ) ln ( ; ) 0

N

i i i
i

H W h
N 

  vx x u w x v (1.2)

where xi, i=1,…,N are sample values; ( )H  is typically the indicator function ( )I  , taking a 

value of 1 when the limit state function is not positive, g(xi)≤0, and 0 otherwise; and ( ; , )iW x u w
is the ratio between the nominal unimodal uncorrelated multivariate Gaussian distribution, with 

parameters u, and the adaptive IS density with parameters w from the previous updating step. 
Using the Gaussian mixture model for h(xi;v), the IS density has the form

1

( ; ) π ( | , )
K

k k k
k

h N


x v x   (1.3)

where ( )N  is a multivariate, Gaussian kernel, and π , ,  and k k k  represent the k-th Gaussian 

kernel’s proportion in the Gaussian mixture, mean vector, and covariance matrix, respectively, 
which correspond to the distribution parameters, v. Because the gradient in Eq. (1.2) is appended 

to the summation in Eq. (1.3), the concept of latent variables is used to obtain kernel parameter 
updating rules, leading to the updating rules presented in Kurtz and Song (2013). 



8

The algorithm can be presented as follows:

1. Initialize: t=0. Choose initial values of parameters
( ) ( ) ( )π ,  and ,t t t
k k k 

k=1,…,K.
2. Pre-sample: t=t+1. Generate N random samples x1,…,xN using “ancestral” sampling and 

parameters from t=t-1. Calculate the -quantile of g(x). corresponds to the proportion 
of xi where g(xi)≤0.

3. Update: Obtain
( ) ( ) ( )π ,  and t t t
k k k 

from updating rules.
4. Check convergence: If , return to step 2. Otherwise proceed to step 5.

5. Final importance sampling: Estimate the failure probability ˆ
tI

( )
{ ( ) 0}

1

1ˆ ( ; , )
f

i

N
t

t g i
if

I I W
N




  x x u v (1.4)

where fN corresponds to a target c.o.v., typically 5%.

An illustrative example for a series system with multiple component limit states follows in 

Section 3.1. Further examples demonstrating the breadth and depth of this approach can be found 

in Kurtz and Song (2013). In Section 3.1, the following limit state function, as presented 

originally in Waarts (2000), is used to demonstrate this approach. The limit state function is

represented by

2
1 2 1 2
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1 2 1 2
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3 ( ) /10 ( ) / 2
( ) min
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7 / 2
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g

x x

x x

    
 

    
  

  
 

  

x (1.5)

where X1 and X2 represent two uncorrelated standard Gaussian random variables. Figure 2 shows 

the limit-state surface and contours of a function proportional to the p*(x) in the standard 

Gaussian uncorrelated space of random variables. Note that this density indicates four separate 

areas of importance. The results for this experiment were N=103 and K=4. The proposed method, 

termed “AIS-CE-GM,” was compared to crude-MCS, termed MCS, and the proposed method 

using a single Gaussian kernel, termed “AIS-CE-SG.”
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Figure 2.  Optimal Density Shape.

2.2. SEISMIC RELIABILITY ANALYSIS OF DETERIORATING REPRESENTATIVE 
U.S. WEST COAST BRIDGE TRANSPORTATION NETWORKS

The methodology in Figure 1 has been applied to a deteriorating bridge network subject to 

seismicity (Kurtz, et al.; under review). This approach uses application data from Caltrans 

(California Department of Transportation) to locate highway bridges and to describe highway 

bridge structures. A clustering technique is used to find representative bridge classes specific to 

the network of choice. Bridge correlations are developed accounting for spatial seismic intensity, 

structural configuration, construction date, and deterioration. A multi-scale approach is used for 

each link to represent many bridges and to simplify the correlation calculation. The time-variant 

network disconnection probabilities and component importance measures are found using 

S-RDA.

To diminish sensitivity to rare event probabilities, Lim and Song (2012) proposed the S-RDA, 

which improves the original RDA by identifying critical sets first. Nevertheless, a multi-scale 

analysis is still required due to network size limitations. If such analyses need to be repeated with 

time-variant deterioration and retrofit data, computational costs increase. Several analysts have 

attempted to define such deterioration by analyzing specific future time points (Liu and Fragopol 

2005, Guikema and Gardoni 2009, Lee, et al., 2010). Many analyses used simplifications, e.g.,

HAZUS fragilities, simplistic capacity degradation, etc. A primary criticism for such approaches 

is that they are supported by engineering judgment, without accounting for data.

To address concerns associated with the factors discussed above, probabilistic seismic capacity 

and demand models for both single-bent and multiple-bent reinforced concrete (RC) bridges 

have been developed using experimental data and time-history finite element analysis as input to 

a Bayesian estimation procedure (Gardoni, et al., 2002; Gardoni, et al., 2003). Furthermore, time 
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variant deterioration functions that reshape as-built fragilities while accounting for structural 

configuration and atmospheric condition have also been developed (Gardoni and Rosowsky 

2009). The exact methodology of the proposed bridge network approach is presented in 

Section 2.2.1, below.

2.2.1 METHODOLOGY

To guarantee that accurate bridge models are used without incurring too much computational 

complexity, representative bridge classes will be used that have high information-content, time-

variant bridge fragility models available. These models are based on Partition About Medoids 

(PAM) clustering (Kaufman and Rousseeuw 1990) of specific data for an area of interest, e.g.,

the Los Angeles Metropolitan Area (LA) (CalTrans 2013). This data was appropriately filtered 

and compiled. This novel approach is more specific than arbitrary categories would allow. The 

optimal number of clusters for this analysis (seven) was determined using the gap heuristic 

(Tibshirani, et al., 2000).  Furthermore, the resulting clusters were filtered to three, which 

accounted for 70% of the total bridges in the dataset. Of these three classes, the first was a two-

span bridge, while the last two were three-span bridges. Because the probabilistic capacity model 

was section-based (Choe, et al., 2007), it could be used for all bridges classes. The probabilistic 

demand model for the two-span bridge, which only has one bent, lent itself to closed form 

fragilities (Huang, et al., 2010), as shown in Figure 3. Note that this bridge class fragility is bi-

variate, requiring two seismic intensity inputs: normalized Peak Ground Velocity (PGV) and 

normalized Pseudo-Spectral Acceleration (PSA).  However, each of the other classes included a 

series system of bents, requiring crude-MCS sampling of the structural design variables and 

Bayesian fragility coefficients (Gardoni, et al., 2003), as shown in Figure 4. Note that these 

bridge class fragilities require a single input of Spectral Acceleration (Sa). (For a full description 

of seismic intensity measures, review Elnashai and Di Sarno (2008).) The as-built fragilities 

were then reshaped over time using “Fragility Increment Functions” (FIFs), which are ratios that 

model both the increased variance and fragility with further chloride-induced RC deterioration. 

FIFs are also tailored to the bridge’s structural configuration and environment.
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Figure 3.  Bridge Class 1 Fragility.

Figure 4.  Fragilities for Bridge Classes 2 (left) and 3 (right).

Because the bridge models account for only the reliability of such components, the correlations, 

multi-scale representations, and parsing of seismic intensity parameters are described. These 

were developed following the suggestion of Lim and Song (2012) in a study for pipeline 

networks, but were specially developed for both bridges. The two sources of ground motion 

correlation come from the inter-event residual and intra-event residual, which account for spatial 

correlation in a seismic event; however, due to the method used to obtain the bridge failure 

correlations, structural configuration, construction date, and deterioration are also accounted for. 

Since S-RDA is strongly sensitive to size and the end goal of this study is to analyze thousands 

P
S

A
/g

PGVT
1
/H

c

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
(E

SY
S|S

a)

Sa/g

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(E

SY
S|S

a)

Sa/g



12

of bridges, links containing several bridges representing major state highways are used, requiring 

some basic usage of set theory. To obtain link reliabilities as series systems of bridge 

reliabilities, an efficient, high-dimensional, multivariate normal, numerical integration scheme is 

required (Genz 1992). Furthermore, to obtain link failure correlations, the process used to obtain 

bridge failure correlations from ground motion correlation still applies with slight modification; 

nevertheless, when many links contain hundreds of bridges, several thousand bridge failure 

correlation terms are relevant to each link failure correlation term. To make this process more 

efficient, only intra-link bridge failure correlation terms are calculated with the full process, 

while the inter-link bridge failure correlation terms are calculated using an interpolation between 

three distributed locations on each link. Given the component description, the network analysis 

and output metrics are discussed.

To summarize the network analysis algorithm and its typical output, the S-RDA is a 

bounds-based convergence algorithm for network disconnection events. S- RDA improves upon 

the RDA by using a version of Dijksta’s algorithm that maximizes the product of the reliabilities. 

This obtains the maximum likelihood disjoint link-set, which represents a safe path from the 

source to the terminal node, updating the upper bound on the system reliability using simple 

subtraction. After decomposing this identified set, further link-sets, or cut-sets, which disconnect 

the source and terminal nodes, are identified by the degree to which they influence the network 

disconnection until a desired tolerance is found, e.g., 1% or 5%. Using these identified disjoint 

sets, the link Conditional Probability Importance Metrics (CPIMs) can be calculated using 

combinations of summations. CPIMs are formulated as the conditional probability that a 

component has failed given the network has failed, which shows the extent to which the 

component of interest participates in the network disconnection event. The CPIMs have both cut-

set and link-set representations that use a subset of identified sets for converged results with no 

need for further reliability analysis. It must also be noted that the network represents both nodes 

and links as node-type components. The original nodes in this network are modeled as infinitely 

reliable and as uncorrelated with the original links. Given this network analysis approach, a 

network of choice is investigated.

An example based on the LA’s network complexity is explored in Section 3.2. (See Figure 5 for 

a description of the network to be analyzed.) As opposed to locating each bridge in the network 

individually, which is a highly time intensive process, the number of bridges on a link is found 

by link and global averages from the Caltrans data, and the class of each bridge in a link is 

determined based on a multinomial distribution sampling of the bridge classes and their 

proportion of the Caltrans data. The epicenter of the Northridge 1994 earthquake, represented 

with a star, is used for the seismicity, with an increased magnitude of 8.0. An attenuation rule is 

used in conjunction with this (Boore and Atkinson 2008). The double-dash dotted lines represent 

subjunctive links, which are infinitely reliable, uncorrelated, and are used to model many source 
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and terminal nodes. Specifically, these are located on evacuation paths, which are connected to 

the terminal node,

Figure 5.  LA Network Representation.

represented with T, as well as on downtown paths, which are connected to the source node, 

represented with S. The scale of the network is shown with latitude and longitude coordinates. 

Several deterioration scenarios are compared and contrasted using crude-MCS: the as-built state, 

where no deterioration has occurred, the 2013 case, where all bridges are deteriorated to 2013 

from their build date, the 100-year Deteriorated case, where all bridges have been deteriorated 

100 years from when the last class was constructed, and the 100-year Retrofitted case, where the 
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same conditions for the 100-year Deteriorated case (except the first bridge class has been 

retrofitted to as-built conditions). To investigate the sensitivity to the multinomial distribution 

sampling, each deterioration scenario uses a different bridge location. The CPIMs were obtained 

such that median difference between link-set and cut-set definitions was 2%. The links 

corresponding to the top ranked link CPIMs are also shown on Figure 5, as will be explained in 

Section 3.2.

2.3 MULTI-SCALE SEISMIC RELIABILITY ANALYSIS OF LARGE
INFRASTRUCTURE NETWORKS USING HIERARCHICAL STRUCTURES

As seen earlier in this report, size limitations must be addressed. The earlier bridge network 

analysis considered some efficiency improvements for the component model by developing a 

multi-scale approach for link reliability analysis of many bridges; however, the S-RDA must still 

be improved for networks having larger numbers of links. To this end, several efforts have

approached multi-scale analysis in the form of a “divide and conquer” method, where 

subnetworks are extracted in a hierarchy and analyzed separately, starting at the lowest level. As 

the analysis progresses upward, the analyzed subnetworks are replaced with “super 

components.” Der Kiureghian and Song (2008), attempted this using both visual inspection and 

the Linear Programming (LP) bounds method.

To remove the contingencies that come with defining the subnetworks, Gomez, et al. (2013),

used a hierarchical paradigm in which clusters were replaced with infinitely reliable “super 

nodes”. While this was helpful, the system disconnection reliability was heavily influenced, and 

correlations could not be accurately modelled. Lim, et al. (in print), proposed a method using a 

hierarchical clustering, in which subnetwork adjacent nodes were connected with “super-links” 

that modelled the subnetwork more accurately, and allowed correlations to be accurately 

modelled using Ncut-spectral clustering (Von Luxburg 2007) with S-RDA. Nevertheless, both of 

these approaches relied on limited heuristic approaches to specify the optimal number of clusters 

per analyzed subnetwork, and have not been tested on networks of large size. Clearly,

automation may solve these issues; however, it must not propagate significant error for large 

hierarchies. Furthermore, automation must be developed with objective rules and must be tested 

on several networks.

Several such automated hierarchical structure identification algorithms (AHSIAs) have been 

developed and tested in the manner described above to address this (Kurtz, under review). A 

brief description of the five developed AHSIAs is provided in the section below. Lastly, a test 

example is described.
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2.3.1 METHODOLOGY

Five AHSIAs were developed. The key features of these algorithms are summarized in Table 1.

When developing an AHSIA, there are two cases that must be avoided: (1) super-link 

representation if it presents little difference from the original subnetwork, and (2) super-link 

representation if it requires too large a subnetwork be analyzed. Additional clustering can be 

used to handle the second case. Each AHSIA is defined in the paragraphs below. The 

convergence approaches describe whether the algorithm requires a global number of 

bottom-level clusters be identified (Global), or whether the algorithm develops each branch until 

a set of convergence criteria are met (Branchwise). “Force clustering” is the algorithmic 

requirement to divide a cluster when the smallest cluster representation is the original. The input 

parameters to AHSIAs are those inputs the user must specify beforehand, other than the network 

topology to run the algorithm. Lastly, the depth of each AHSIA describes how many levels of 

subclusters can be typically expected. 

Table 1.  AHSIA Qualitative Description

Algorithm Convergence Forced clustering Parameters Depth

I-AHSIA Bi Branchwise Yes 1 Deep

min Branchwise Yes 1 Deep

RI-AHSIA Branchwise No 2 Moderate

N-AHSIA Stage Global Yes 1 Shallow

Global Global Yes 1 Shallow

The first AHSIA was termed “Ignorant-AHSIA” or I-AHSIA. This name was justified, because 

it only analyzed the subnetwork structure and did not take further information from network 

objective functions (although Ncut-spectral clustering is still being used). The convergence of 

I-AHSIA is branchwise, i.e., each branch must meet the convergence criteria before it is finished. 

This algorithm operates by finding the first division k of the subnetwork starting with k=2, such 

that the representation is less than some threshold num (e.g., 30), and the next largest division 

(k+1) is greater than the threshold. This optimization is posed this way so that the subnetwork 

analyzed by S-RDA is neither too large nor too small; however, some topologies do not allow 

the represented subnetwork to be less than num. Therefore, two heuristic relaxations are used 

when this optimization is not possible: (1) bifurcation, i.e., k=2, and (2) relative minimum, i.e.,

the minimum subnetwork representation. Convergence occurs when the subnetwork without 

super-links is less than or equal to num. Nevertheless, this algorithm will always select a division 

until all “leaf” clusters satisfy the convergence.

Because this methodology clearly presents some issues for the I-AHSIAs, a “Relative Ignorant-

AHSIA” or RI-AHSIA is proposed. This optimization is purely relative and selects the minimum 
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representation. Additionally, the optimization considers k=1, or the size of the original 

subnetwork without super-links. This means that forced division no longer occurs. Additionally, 

the difference between the original and the represented subnetwork is guaranteed to be above 

some threshold, e.g., 10. This is relaxed for k=2,3, so that a larger diversity is considered. If such 

relaxations of the difference constraint occur within 3 levels of the leaf subnetworks, the tree will 

be “pruned,” because this relaxation provides little benefit. All five AHSIA use such pruning.  

There are two convergence criteria: (1) a non-reducible branch, i.e., k=1, and (2) a reducible 

branch, i.e., the original subnetwork is less than some threshold, such as 30. Note that the first 

three AHSIA are “ignorant” of specific network objective function information, other than Ncut-

spectral clustering.

To handle the network objective function information explicitly, “Normalized cut (Ncut)-based-

AHSIA,” or N-AHSIA, is used. N-AHSIA uses global convergence, as opposed to the 

branchwise convergence of the three earlier examples. This algorithm continues until maxk , the 

number specified by minimum value of the modularity objective function (Laarhoven and 

Marchiori 2013), is reached. At each level of analysis, certain further divisions, with k

corresponding to the minimum Ncut value, are considered. Either all divisions in the same stage, 

“stagewise,” or all divisions globally, “global,” are considered. Based on whether the stagewise 

or global versions are used, N-AHSIA selects the certain, further division with the largest 

difference between the represented and the original subnetworks.

Each of these clustering techniques results in a network “dendogram” (Hastie, et al., 2009), 

which corresponds to a “tree” description of the hierarchical structure for the network. Especially 

for networks which have clear hierarchical structures, the form of this dendogram is essential for 

evaluating how these AHSIA perform. Examples of a RI-AHSIA dendograms are shown in 

Figures 11, 12, and 15. The numbers at the leaf clusters, which are at nodes with only one 

connection, and the numerators at other locations correspond to the size of the original 

subnetwork, which is the number of relevant nodes and uni-directional links. The denominator 

adds the super-link represented cluster sizes with the adjacent uni-directional links to obtain the 

size of the represented subnetworks. The super-link represented cluster sizes are the sum of 

adjacent nodes, source and/or terminal nodes, and uni-directional super-links.

For a case study, a possible realization of US pipeline network is investigated in the Section 3.3, 

as shown in Figure 6. The pipeline component model in Lim, et al. (in print), is used for this 

example. The Los Angeles International Airport (LAX) and the John F. Kennedy International 

Airport (JFK) are selected for the source and terminal nodes, denoted by 9 and 67. All nodes 

used in this network correspond to airports with at least 10 uni-directional connections (Opsahl 

2011). A “nearest neighbor” graph is constructed by connecting a given node to two of the six 

closest nodes based on uniform random sampling. This network has 103 nodes and 183 bi-

directional links for a total of 469 components. Several numbered links are also shown in Figure 
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6, which correspond to the top-ranked CPIMs. These will be discussed in Section 3.3. Note that 

several scaled parameters must be specified for the multi-scale S-RDA. For the bounds tolerance,

the following equation is used:

0.01,       0.10

0.01 ,   0.10 0.005
0.10

0.005,      0.005

bounds

UB

UB
tol UB

UB





  




(3.1)

where UB represents the current value of the upper bound for the current analyzed subnetwork. 

For calculating the correlation terms, the following equation is used:

0.30,       0.10

0.30 ,   0.10 0.02
0.10

0.02,      0.02

corr

UB

UB
tol UB

UB





  




(3.2)

Furthermore, the seismicity is modelled based on the New Madrid seismic zone, with a moment 

magnitude of 8.0, and denoted by a star, which corresponds to the relevant earthquakes in the 

1800s. The most important CPIM components, as well the dendograms, are considered, in 

addition to the comparison between AHSIAs.
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Figure 6. US pipeline network representation.

2.4 GROUP IMPORTANCE AND REGIONAL MANAGEMENT STRATEGIES 
(GIMS)

Group importance measures (GIMs), using union and intersection descriptions with link-set and 

cut-set information from the network analysis, are developed in this section. These methods have 

been investigated in depth in Kurtz (under review), and analysis based on these investigations 

will be applied to a case study, as described in Section 2.4.1. These regionally based approaches 

are not affected by the same issues that influence component-level importance metrics. 

As seen in earlier studies, there are many reasons to perform network studies. To improve 

networks, defining the vulnerabilities with reference to the overall network function is essential; 

however, the vast majority of work focuses on the component level. Component views may be 

very sensitive to correlations that elevate the importance of components, but have little effect on 



19

network function. Furthermore, these views may also be very sensitive to specific terminal and 

source node combinations, as well as to specific seismicity. Furthermore, to manage such 

networks, it may be more useful to specify regional strategies based on groupings. As seen in 

Section 2.2 of this report, the effects of deterioration were rather erratic at the component level. 

GIMs will be investigated as a way to manage these concerns.

A desire to consider more than one component at a time in terms of rankings is something seen 

in many fields. In finance, many described risk to portfolios using “price risk” in the 1990s. This 

construct is defined as “the likelihood of value loss for an institution’s entire portfolio based on 

fluctuations in market conditions, e.g., commodity pricing, interest rates.” For traditional 

products, such price risk is separable, meaning that part of the magnitude for the portfolio risk 

from one of the risk factors can be found by performing sensitivity analysis for that risk factor. 

This assumes that such factors are independent; however, there exists the so-called “correlation 

product” where many risk factors are found to be non-separable in nature due to strong 

correlations. For these reasons, financial risk analysis must consider combinations of risk factors 

when analyzing correlation products (Mahoney 1995). 

Such correlated risks indicate the structure in which the analysis should be conducted. In data 

mining, many have found that association rules are strongly useful. These are applications where 

the percentage of transactions containing two distinct products, e.g., diapers and beer, is mined 

from a data set (Holt and Chung 1999). Information about products with a high incidence of sale 

and strong association rules help to indicate better store layouts for vendors. In a similar manner, 

grouping components in a network help indicate the network structure. Now that such AHSIA 

are available to describe network groupings on several levels, an exact methodology for GIMs 

can be described.

2.4.1 METHODOLOGY

Taking inspiration from the CPIM definition, one can use “network function” to describe GIMs. 

Network function describes how flow can happen through a component, given the system failure. 

Extrapolating this to clusters, GIMs describe whether or not a path through the cluster is 

available. Using Boolean descriptions, there are two extremes one can use to describe the 

identified groups: intersection, or union. The intersection description is a joint failure and 

parallel system. It conservatively describes the cluster failure; therefore, one would expect that it 

favors smaller values and smaller groupings of components. It is defined as “the conditional 

probability that all relevant nodes and links fail given the network has become disconnected”. 

The union description only requires that at least one relevant node or link fail. This description is 

also a series system. Because it is a more relaxed description of the cluster failure, one would 

expect that it favors larger values and larger groups of components. The union description is 
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defined as “the conditional probability that at least one relevant component fails given the system 

failure”. Both descriptions have link-set and cut-set definitions, as shown in Kurtz (under 

review); however, convergence is typically not an issue due to using the highest level super -link 

representation. 

These GIMs are evaluated using a refined LA traffic network representation in Section 3.4, as 

shown in Figure 7. This network has 77 nodes and 117 bi-directional links for 311 total 

components. The seismic event, denoted by a star, is modeled after the Northridge 1994 

earthquake, and assumes a moment magnitude of 6.7. The source and terminal nodes, placed at 

50 and 76, are chosen to be at the largest extent of the network. The parameter in Equation 3.2 

had to be changed from 0.30 to 0.10, because the first value resulted in a convergence that was 

too coarse. Because RI-AHSIA performed best in Kurtz (under review), it was used for this 

example. The component CPIMs, the top 10 of which are shown in Figure 7, will also be 

investigated and compared.

Figure 7. Refined bridge network representation.
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2.5 DETERIORATING EFFECTS ON PIPELINE NETWORKS

To investigate a different network subject to both deterioration and time-variant effects, a 

deteriorating pipeline model subject to non-uniform deterioration is presented. Using a fitted FIF, 

the pipeline fragilities are deteriorated over time. The deterioration map is created by having the 

components closest to the seashore begin deteriorating earliest, while the ones furthest away 

begin to deteriorate latest. Three time points are considered and compared. Additionally, a 

reliability-based hierarchical structure, which may become time-variant depending on changes to 

link reliabilities, is compared to a connectivity-based one. The changes over time for component 

importance are also investigated. 

An important attribute of existing civil infrastructure is that it is consistently deteriorating over 

the life-cycle, making the state of repair and the need for investment in infrastructure inherently 

dynamic. In the broader field of deteriorating bridge network seismic risk analysis, some have 

attempted analysis using data-driven statistical learning concepts (Rokneddin, et al., 2012); 

however, no one has attempted this type of analysis using the analytical methods used in the 

development of this report. Unfortunately, such statistical learning approaches tend to neglect 

underlying physics and analytics, while the approaches used in this report model these explicitly.

The FIFs may also be generalized to reshape the brittle pipeline. A study for investigating non-

uniform deterioration using the S-RDA disconnection bounds, component CPIMs, and 

reliability-based hierarchal studies allows one to consider how much deterioration affects 

network characteristics.

2.5.1 METHODOLOGY

Using the same pipeline network model as in Section 2.3, the major differences that will be 

discussed are the deterioration model and the distribution of deterioration parameters. Using the 

same approach for the bridge model, FIFs relevant to the pipeline model are obtained. Because 

appropriate data is not available, the original forms in Gardoni and Rosowsky (2009) are 

considered. The general FIF form is
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(5.1)

where D is a seismic intensity parameter, a, b, c, and d are variables that control the shape, and t

is the time since the start of analysis. The shape parameters are tuned such that the steepest 
analyzed fragility, i.e., the node fragilities in the pipeline models, have less than a 1% survival 

area at t=50, chosen because most design lives are 50 years. To ensure the survival area is small 
enough, the time-variant normalized average, ( )fragA t , was used. This is determined by
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where  pipe
vF D are the node fragilities. To select the shape parameters, 1 ( ) 1%fragA t  satisfies 

the earlier condition. Through this fitting, a=1.9, b=4.0, c=0.032, d=1.1, and Tcorr=10. 
Revisiting the non-uniform deterioration map, the readily modifiable terms relevant to 

deterioration only impact the start of corrosion, not the rate. For those reasons, corrosion 
initiation times, Tcorr, are exponentially distributed from 1 “year” for the 10% of components 

closest to the shore, to 20 “years” for the 10% of components furthest from the shore, where the 
1 “year” and 20 “years” corrosion time correspond to splash-zone and atmospheric 

environmental characteristics, as shown in Figure 8. 

Figure 8. Pipeline deterioration classification.

Lastly, to introduce time-variant sensitivity into the hierarchical structure, connectivity 

information, which is used to generate the connectivity-based hierarchical structure, is replaced 

with reliabilities in the node adjacency matrix. In simpler terms, the matrix entries having a 

value of one are replaced with the relevant link reliability. Using such a matrix modification, the 

reliability-based hierarchical structure is obtained. The reliabilities decrease over time as the 

deterioration occurs, possibly influencing how the structural organization happens. This may 

present benefits for specific applications.

Splash Atmospheric
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As a case study of deteriorating pipeline networks, an example from Lim, et al. (in print), is 

investigated in Section 3.5, as shown in Figure 9. This network has 59 nodes and 99-bi-

directional links for 257 components. The seismic event, denoted by an epicenter at the star, has 

a moment magnitude of 6.0. The source and terminal nodes are placed at 16 and 46. Three time 

points are considered: t=0, 13, and 25 years. The top 10 ranked components are also shown in 

this figure, as will be discussed in the relevant results section. Furthermore, the network rubrics 

mentioned earlier, specifically, the variations between time points, will be used to measure the 

effects of deterioration using both connectivity and reliability-based hierarchical structures.

Figure 9. Pipeline network configuration with 0 year top raked components.
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3. RESULTS

3.1 CE-BASED ADAPTIVE IS USING GAUSSIAN MIXTURE

Using the suggested procedure mentioned earlier, Table 2 shows the summary of results for 

several coefficient of variation (c.o.v.) values. An addition symbol is used in both the CE-AIS-

SG and CE-AIS-GM columns to show the number of pre-samples added to the number of final 

IS samples. The single Gaussian approach required an extra step to converge in the search when 

compared to the Gaussian mixture approach. For all three c.o.v. values, the single Gaussian 

approach required an extra order of magnitude to converge for the final IS when compared to the 

Gaussian mixture approach.

Table 2.  Comparison for Different Sampling Methods

c.o.v.

(%)

Number of Samples Failure Probability

MCS CE-AIS-SG CE-AIS-GM MCS CE-AIS-SG CE-AIS-GM

10 60,000 4,000+500 3,000+30 1.83×103 7.97×10-4 1.50×103

5 1.90×105 4,000+1,500 3,000+348 2.12×103 8.80×10-4 2.12×103

3 5.20×105 4,000+2,500 3,000+943 2.16×103 8.72×10-4 2.15×103

Figure 10 shows the convergence of the IS density, requiring 3 updating steps. No preliminary 
component reliability analysis is required, as is typical for existing series system approaches. 

Due to the non-circular shapes present, the effect of
k at each region of importance can be seen. 

These shapes also adhere to the slopes of the component limit states. Note that the proposed 

method converges two orders of magnitude more quickly than crude-MCS, and that the single 
Gaussian approach exhibits false convergence. The latter point occurs due to the single Gaussian 

only being able to encapsulate one region. The c.o.v. behavior for this approach also exhibits 
jagged behavior with further samples, which would not manifest at larger target c.o.v. values.
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Figure 10.  Convergence of Gaussian mixture.

3.2 SEISMIC RELIABILITY ANALYSIS OF DETERIORATING REPRESENTATIVE
US WEST COAST BRIDGE TRANSPORTATION NETWORKS

Using the earlier parameters, the S-RDA bounds and crude-MCS estimate, Pf, with 5% c.o.v.,

were obtained in Table 3. The bounds represent the closest S-RDA bounds contained by the 

percentage described. Because the crude-MCS estimate is contained at 1% bounds, the best 

agreement occurs for the As-built and 100-year Deteriorated cases. In contrast, the 2013 case

contains the sampling estimate at 2%, which is initially below the bounds, while the retrofitted 

case contains the sampling estimates at 3%, which is initially above the bounds. Due to the 

nature of the subjunctive representation, many critical link-sets are identified quickly, indicating 

that the upper bound converges quickly. This indicates that the 100-year Retrofitted case is 

particularly problematic. Furthermore, if cases using different bridge locations were investigated 

at 20-year intervals, non-monotonic increases in bounds values occur, indicating sensitivity to 

bridge locations.
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Table 3.  Crude-MCS Comparison: Disconnection Probability

Proposed Methodology Crude-MCS

Case
10% 

bounds
5% 

bounds
1% 

bounds
Pf

As-built
UB 0.116 0.0912 0.0734

0.0721
LB 0.0231 0.0415 0.0634

2013
UB 0.140 0.114 0.0973

0.0840
LB 0.0435 0.0647 0.0873

100-year
Deteriorated

UB 0.161 0.139 0.123
0.122

LB 0.0639 .0891 0.113

100-year
Retrofitted

UB 0.143 0.125 0.106
0.113

LB 0.0473 0.0747 0.0965

The top 5 CPIM values that were obtained are shown in Table 4, with the execution times shown 

below the case names. The cut-set and link-set values in this table can be interpreted as how well 

the results have converged based off of the difference between them. Because the link-set values 

are probabilities greater than one, there is some residual error that coming from an efficiency 

approximation; however, this error is not excessive based on further analysis.
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Table 4.  Top 5 CPIMs for Validation Cases

Proposed methodology

Case Link Cut-set Link-set

As-built 
(29,600 sec)

76 0.997 1.07

37 0.993 1.07

75 0.995 1.06

38 0.995 1.06

23 0.98 1.04

2013 
(22,014 sec)

38 0.995 1.06

76 0.994 1.06

75 0.995 1.06

37 0.991 1.05

15 0.981 1.04

Deteriorated 100 years 
(18,479 sec)

38 0.989 1.04

37 0.988 1.04

75 0.988 1.04

76 0.988 1.04

16 0.966 1.01

Retrofitted 100 years 
(44,442 sec)

38 0.997 1.05

76 0.998 1.05

75 0.996 1.05

37 0.997 1.04

24 0.987 1.03

While each case uses different bridge locations, the same four links comprise the top four 

positions in each case, 37 and 38, and 75 and 76, which correspond to two different directions of 

the same bi-directional links. These links are shown with red dotted lines on Figure 5. Links 15 

and 16, and 23 and 24, which also correspond to two directions of the same bi-directional links,

are also important, because they occupy the 5th highest ranked CPIM values. These are shown 

with purple dashed lines in Figure 5. Based on these results, it is clear that merely retrofitting 

only one bridge class throughout the network does not have a large benefit for network behavior. 

Furthermore, the bridges on bi-directional links (corresponding to 37 and 38, 75 and 76, 15 and 

16, and 23 and 24) should be retrofitted/inspected in that order.
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3.3 MULTI-SCALE SEISMIC RELIABILITY ANALYSIS OF LARGE 
INFRASTRUCTURE NETWORKS USING HIERARCHICAL STRUCTURES

Using the earlier experimental method, the five AHSIA obtain several bounds results, as shown 

in Table 5. Two levels of bounds are considered: within 5% and within "closest %". "Closest %"

bounds are either within 1% bounds or the closest bounds that can be obtained when all link-sets 

and cut-sets are accounted for. Note that this table also contains the 5% c.o.v. crude-MCS 

estimate for comparative accuracy. Of these AHSIA, the RI-AHSIA and the N-AHSIAs perform 

best in terms of probability; however, RI-AHSIA requires the least amount of time. While the 

I-AHSIAs return the fastest results, they vastly underestimate the disconnection probability. 

Table 5.  US Pipeline Network AHSIA Comparison.

Algorithm

(MCS: 67.0%, 5% c.o.v.)

Closest % bounds 5% bounds
Time (sec)

LB UB LB UB

I-AHSIA
Bi 49.4 50.3 46.5 50.8 2,434

Min 47.7 48.6 44.5 49.3 2,378

RI-AHSIA 65.7 66.5 63.8 68.5 2,874

N-AHSIA
Stage 72.0 73.0 71.8 74.8 3,817

Global 71.0 72.0 70.9 73.9 3,628

For an example of the hierarchical structure of this network, see Figure 11, which shows the 

corresponding RI-AHSIA hierarchical structure. Both of the I-AHSIA create the same 

dendograms, but require one more level than the RI-AHSIA. This additional depth creates too 

much error. Therefore, RI-AHSIA presents the best performance for this study. Figure 6 shows 

the ten components with the highest CPIM values using the RI-AHSIA structure, while Table 6

lists their CPIM values. The top six ranked components are the unidirectional links, i.e., the top 3 

bi-directional links, closest to the epicenter. The other four links correspond to the unidirectional 

links on the other side of the fault. For this example, the top ranked CPIMs are strongly driven 

by the epicentral distance. It is interesting to note that none of these correspond to the RI-AHSIA 

intercluster links.
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Figure 11.  US pipeline network RI-AHSIA hierarchical structure.

Table 6.  US Pipeline Network RI-AHSIA Top 10 CPIMs.

Component Cut-set(%) Link-set(%)

132 99.4 99.6

133 99.4 99.6

285 99.3 99.4

284 99.3 99.4

131 97.3 97.4

130 97.3 97.4

460 97.0 97.2

461 97.0 97.2

274 90.1 90.3

275 90.1 90.3

3.4 GIMS

The refined bridge network similar to LA is analyzed using the aforementioned experimental 

approach. The multi-scale S-RDA analysis resulted in disconnection probabilities of 64.4%-

65.3% using 1% bounds, and 62.2%-67.1% using 5% bounds, while crude-MCS resulted in a 

disconnection probability of 66.8% with 5% c.o.v. The bounds definitions have the same 
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explanation as discussed in Section 3.3, except, since the bounds all converge well, 1% is used 

instead of closest%. This result is well-contained by the 5% bounds, but not within the 1%, 

indicating that some error, which was also present in the earlier analysis, is present. See 

Figure 12 for the RI-AHSIA hierarchical structure. This structure indicates how bridge 

management might be organized for this network. When organization is not dictated by geo-

political boundaries, management bodies may classify bridges into lowest level groupings based 

on the relevant links. Furthermore, higher level managers may manage those at the leaf nodes 

based on the locations of junctures in Figure 12. The highest level manager corresponds to the 

juncture with numerator 311.

Figure 12.  Bridge Network RI-AHSIA Hierarchical Structure.

For a description of component importance, Figure 7 shows the components having the top 

CPIM values, while Table 7 lists the values. Note that there seems to be coarse convergence 

throughout the table, but especially for the top ranked components. Only two of these 

components, 112 and 113, correspond to the directions of one bi-directional intercluster link, 

which occur on the lowest level of the dendogram. Overall, the highest ranked links are strongly 

driven by epicentral distance. Furthermore, 88 and 89 correspond to a bi-directional link that is 

peripheral, which probably has elevated importance due to high correlations with more important 

components.  In addition, the cut-set definition has a higher value than the link-set definition, 

indicating poor convergence.

13+13+10 = 36

64 + 10 + 10 = 84 36 + 4 + 4 = 44

81 + 25 + 8 = 114 25 + 4 + 4 = 33 7 + 4 + 4 = 15

311

199 102

129 60

57

41
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Table 7.  Bridge Network Top 10 CPIMs.

Component Cut-set(%) Link-set(%)

88 79.9 82.3

89 79.8 82.3

112 67.4 69.5

113 67.5 69.5

90 66.7 68.6

91 66.6 68.6

110 59.9 61.8

111 59.9 61.8

246 56.6 58.3

247 56.6 58.3

To overcome such component issues, a regional perspective based on GIM rankings will be 

investigated. See Figure 13 for a barplot of the GIM values. These clusters are labeled from 0 to 

the total number of clusters from the first branch on the left to the bottom right leaf cluster in 

Figure 12, above. Because the bridge component definition uses infinitely reliable nodes, these 

are omitted from the intersection description. It is clear from the barplot that there is much more 

variation for the intersection description than for the union description, and that cut-set-based

and link-set-based approaches converge well. This indicates that there is more information in the 

intersection description. In general, the intersection values are smaller. 

Figure 13.  Bridge Network GIM Values.
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Because the values are hard to connect to the regions and network resolutions they represent, the 

link-set based group ordinal rankings in the dendogram structure are shown in Figure 14. The 

ranks in the tops of the ovals represent the intersection description, while the bottom numbers 

represent the union description. The link-set definition is used because more link-sets were 

identified in the multi-scale S-RDA approach. This figure contains a large amount of

information; however, the source node’s influence is most important. For both descriptions, the 

branch that ends with the leaf cluster containing the source node, i.e., the cluster ranked 3 and 6 

by intersection and union, respectively, with size 19 is highly important. The top of the branch is 

of size 102, yet still receives the number one ranking from intersection, while the small-sized

leaf cluster containing the source node is size 19, while still being ranked highly by union. The 

regions containing the source node must be given special treatment by management bodies. The 

leaf cluster containing components 88 and 89, which are the top ranked components in terms of 

the CPIM, receives an intersection rank of 7, showing that it is not as important. Note that these 

groupings are, like the components, all close to the epicenter; however, the sub-branch 

containing the terminal node, which is far from the epicenter, also receives a high intersection 

ranking of 4, with the cluster containing it being assigned a ranking of 5. The terminal node 

cluster receives an elevated ranking due to its small size, so it does not need to be given as much 

consideration by management. These group metrics are less sensitive to the issues that affect the 

component importance metrics. Both show that several components and groups closest to the 

epicenter and participating in network function are important.

Figure 14.  Bridge Network GIM Link-set Rankings.
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3.5 DETERIORATING EFFECTS ON PIPELINE NETWORKS

Using the experiment design and parameters discussed earlier, a deteriorating pipeline network 

will be investigated. First, the difference between the connectivity-based and the reliability-based 

hierarchical structures will be investigated. Next, the S-RDA bounds for each structure at each 

time point will be explored. The component CPIMs for each structure will be investigated last.

For a description of the connectivity- and reliability-based hierarchical structures, see Figure 15.

While these two hierarchical structures have the same depth, the major difference between them

is that the reliability base does not specify a leaf cluster of size 4. This reliability-based structure 

is also more balanced on the top-level division. Although the reliabilities degrade over time, the

reliability-based hierarchical structures remain constant over time. Furthermore, the S-RDA 

bounds for each time point can be found in Table 8. The bounds descriptions are the same as 

provided in the Section 3.3. The Time column corresponds to the amount of time (in seconds)

required to obtain the closest% bounds. While the connectivity-based S-RDA bounds contain the 

5% c.o.v. crude-MCS bounds best, the reliability-based S-RDA bounds exhibit better 

convergence. This stronger convergence indicates further why the reliability-based S-RDA 

bounds require more time. Because the connectivity-based S-RDA at 13 years cannot converge 

within 5%, coarse convergence is seen for the connectivity-based structure. The results for this 

case are listed as not applicable (NA). Because the reliability-based approach underestimates 

when compared to crude-MCS, for two out of three cases, the connectivity-based approach 

contains the crude-MCS estimate best, indicating that it is the most accurate. However, the 

reliability-based approach is better for the 13-years case, because it converges much better.

Figure 15.  Pipeline Network Hierarchical Structures.
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Table 8.  S-RDA Bounds.

t (yrs)
Crude-MCS

5% c.o.v.

Connectivity Reliability

5% Closest% Time

(sec)

5% Closest% Time

(sec)LB UB LB UB LB UB LB UB

0 52.3 47.5 52.5 51.5 52.5 436 44.6 49.5 48.4 49.4 538

13 52.3 NA NA 48.0 54.1 702 47.5 52.4 49.0 52.3 948

25 60.5 55.1 60.0 57.8 60.0 635 54.1 59.0 56.6 58.9 652

For the 0 year case, the highest ranked CPIMs values are shown in Table 9, below, while their 

locations are listed in Figure 9. Note that two of these components are nodes, with one being the 

terminal node. Also note that both structures rank the top CPIMs the same, with very similar 

values. 

Table 9.  0 Year Pipeline Top 10 CPIMs.

Connectivity Reliability

Component Cut-set(%) Link-set(%) Cut-set(%) Link-set(%)

110 39.0 40.7 39.6 40.4

111 39.0 40.7 39.6 40.4

102 36.0 37.6 36.6 37.3

103 36.0 37.6. 36.6 37.3

256 34.6 36.1 35.0 35.7

257 34.6 36.1 35.0 35.7

97 34.2 35.8 34.7 35.4

96 34.2 35.8 34.7 35.4

54 32.3 34.3 34.2 35.2

46 30.8 32.6 33.8 34.7

The highest components for the 13-year and 25-year deterioration cases are shown in Figure 16. 

For either the connectivity- or reliability-based approach, the highest ranked components, by 

CPIM values, that occur only for 13 years of deterioration are shown in gold. The highest ranked 

components that occur only for 25 years of deterioration are shown in black. The top ranked 

components for both deterioration scenarios are shown in grey. The corresponding top ranked 

CPIM values for both structures are shown in Table 10 and Table 11, for 13 years and 25 years 

of deterioration, respectively. Note that the connectivity- and reliability-based top ranked CPIM 

differed in both the order of rankings and in the components specified for the 13-year 

deterioration case. Recall the coarseness of the connectivity-based S-RDA bounds for the 

13-year deterioration case. This results in more discrepancy between the different structures. 
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Lastly, the 25-year deterioration case ranks the same top 10 components, but orders them 

differently. These bounds are less coarse than the 13-year deterioration case. Furthermore, it is 

evident from the location description in Figure 16 that the top ranked CPIM components 

eventually all become nodes near the seashore; however, the nodes closest to the seashore are not 

given the highest rankings, and “38” and “28” do not appear in the top 10 for the 25-year 

deterioration case. While the rankings are sensitive to the node fragility fitted FIFs, this indicates 

that network function still strongly influences which components are most important. The 

deterioration effects seem to stabilize as more deterioration occurs. Furthermore, the 

deterioration has larger system effects later in the analysis time, while more effects happen at the 

component level earlier on.

Figure 16.  Pipeline network hierarchical structures.
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Table 10.  13-Year Pipeline Top 12 CPIMs.

Connectivity Reliability

Component Cut-set(%) Link-set(%) Cut-set(%) Link-set(%)

35 51.5 45.6 51.6 49.7

55 51.1 45.3 34.8 33.6

38 45.9 33.0 42.3 28.8

37 45.8 23.7 41.5 36.6

13 42.3 40.3 41.7 41.7

12 42.0 39.7 41.0 41.2

36 41.0 33.6 35.6 34.4

110 40.1 40.3 39.9 40.2

111 40.1 40.2 39.9 40.2

102 37.0 37.1 36.7 37.1

103 36.9 37.1 36.7 37.1

28 33.9 29.1 39.5 39.3

Table 11.  25-Year Pipeline Top 10 CPIMs.

Connectivity Reliability

Component Cut-set(%) Link-set(%) Cut-set(%) Link-set(%)

55 79.6 83.3 69.4 68.0

13 78.6 81.7 80.2 72.7

12 75.1 77.2 76.7 73.6

35 74.1 74.2 67.6 72.3

36 66.8 70.4 70.7 70.1

56 66.5 69.9 70.3 69.5

37 66.4 69.7 70.3 69.3

57 65.1 67.9 69.3 67.5

47 63.7 65.6 67.6 65.3

39 63.2 65.0 67.4 64.6
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4. DISCUSSION

4.1 CE-BASED ADAPTIVE IS USING GAUSSIAN MIXTURE

Using the proposed method for adaptive IS to address a series system showed the value of using 

a multimodal distribution model, and that the near-optimal IS density could be found using fewer

iterations of the algorithm. Furthermore, in Kurtz and Song (2013) this approach was found to be 

1) efficient and accurate to the level of both probability and limit-state curvatures, and 2) to 

perform well for a variety of component and system problems, including series and general 

systems. Additionally, noisy limit states exhibited few problems for this approach. Lastly, it is 

apparent that, if the distribution of experimental observations and the prior distributions are 

supplied, a Gaussian mixture could be used to fit the unknown optimal distribution by 

minimizing the CE distance between it and the overlap.

4.2 SEISMIC RELIABILITY ANALYSIS OF DETERIORATING REPRESENTATIVE 
US WEST COAST BRIDGE TRANSPORTATION NETWORKS

Using the multi-scale, time-variant, seismic, bridge model discussed earlier, several bridge 

networks with the same topology, but at different bridge locations, were analyzed at different 

stages of deterioration using S-RDA bounds and CPIMs. The use of this approach provided a 

way to apply the component-driven network model in Figure 1 to bridge networks. Using

accurate probabilistic capacity and demand models, along with application-specific bridge 

classes, a transportable methodology that does not over-generalize allows for application-specific 

results, and presents a significant benefit over existing analysis approaches. The earlier example 

demonstrated the dependence on the bridge configuration, the amount of deterioration, and 

location of the epicenter. Fortunately, it also indicated that the most important links needed to 

improve via bridge retrofit or repair were not strongly deterioration dependent. In Kurtz, et al. 

(under review), tests addressing the effects of time-variance for the same bridge locations, spatial 

correlations, and subjunctive representations were investigated. Furthermore, this study found 

that the approximations used for efficiency purposes did not introduce intolerable error.

4.3 MULTI-SCALE SEISMIC RELIABILITY ANALYSIS OF LARGE 
INFRASTRUCTURE NETWORKS USING HIERARCHICAL STRUCTURES

Several of the AHSIAs used to obtain hierarchical structures for S-RDA were used for earlier 

investigations that included a possible realization of a US-wide pipeline network subjected to 

one of the New Madrid seismic events of the early 1800s. The results of this analysis showed 

that the components with the highest valued CPIMs were most sensitive to the location of the 

epicenter, and that RI-AHSIA performed the best. The study in Kurtz (under review) further 

investigated a regular network, a starlike topology (as found in transmission networks), a large 

network, and a more refined version of the earlier-used bridge network.  These studies further 
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suggest that the RI-AHSIA is the most robust and the most appropriate to use with S-RDA. 

Furthermore, the hierarchical structure using RI-AHSIA identifies the most intuitive form.

4.4 GIMS

GIM formulations using union and intersection descriptions for both link-set and cut-set 

definitions were developed and tested on a more refined version of the bridge network. As was 

found with the previous bridge network study, the epicentral distance again determined many of 

the groups found to be most important. Specifically for the GIMs, the location of the source node 

strongly affected which groups were most important. In the hierarchical structures, those

containing highly ranked clusters were also found to be highly ranked themselves. These 

structures also determine how management should be organized at several levels of resolution. In 

Kurtz (under review), a pipeline network with a clear hierarchical structure was also analyzed. 

This network seemed to indicate that the most important groups of components contained neither 

the source nodes nor the terminal nodes, but did contain the groups that were most important to 

traversing between the two. Finally, from these analyses it was found that, even when the 

intersection description has more information content due to the larger variability in values, both 

descriptions are necessary for determining which groups are most important. Furthermore, the 

larger groups with high intersection description ranking, as well as the smaller groups with high 

union description ranking, must be given special attention by management organizations.

4.5 DETERIORATING EFFECTS ON PIPELINE NETWORKS

A deteriorating pipeline network was investigated to further determine the effects of 

deterioration on several network rubrics. The component level was most sensitive to the 

deterioration, while the system level showed smaller changes. Particularly for the connectivity-

based analysis, the network analysis convergence was also strongly sensitive to the level of 

deterioration. In Kurtz (under review), this same network was re-evaluated using only link-based 

deterioration. This approach resulted in changes to the reliability-based hierarchical structure 

with time. For these pipeline networks, the connectivity-based approach showed less sensitivity,

but more accuracy, with deterioration. A bridge network with non-uniform deterioration was also 

investigated. While the bridge model exhibited increases in values for all network rubrics, the 

ordinal rankings exhibited very little change. The bridge network example showed that the 

reliability-based approach was most accurate. This indicates that pipeline networks were far 

more sensitive to deterioration than the bridge network.
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5. ANTICIPATED IMPACT

This report has focused on several ways to perform adaptive sampling and analysis of 

deteriorating infrastructure networks with a focus on group metrics and hierarchical structures. 

As is the case for most research, there are always improvements to be considered. The adaptive 

IS approach 1) is able to solve all structural reliability problems for both component and system 

examples, 2) is not sensitive to the level of probability and limit state curvatures, 3) can handle 

multiple design point problems, and 4) can handle limit states with numerical noise. This 

analysis also allows the user to identify the most important regions of the failure domain. 

A simple advancement for this method would be to investigate a Bayesian parameter estimation

example directly. While the adaptive IS approach presents a significant benefit over general IS, 

the computational complexity can be further decreased by making the number of densities during 

the search adaptive, based on the densities’ relative importance, and re-using the pre-samples in 

the final IS. Lastly, this approach can be further applied to even higher complexity applications, 

e.g., deterioration parameter maps and bridge parameters. Such network applications also show 

rather interesting uses of existing data. For example, using strategic field samples of surface 

chloride concentrations, deterioration maps may be updated at uninspected areas, presenting 

even more future benefit.

These deterioration maps are of specific interest to the bridge component-driven network model. 

This component model enables the analysis of the general transportation networks that are 

predominantly governed by bridge failures in seismic zones of large scale networks, e.g., several 

thousand bridges; however, this network can be further expanded to failures of other structures, 

e.g., fault surface ruptures of pavement, tunnel failures, culvert failures, landslides of 

embankments, etc. Furthermore, this model can be applied to an exact topology of an existing 

network with accurate bridge locations to suggest optimal management strategies to an existing 

agency. Because this approach was developed for major state highways, the resolution of this 

network must be given special consideration. The node models may also be advanced to use the 

behavior of representative highway bridge interchanges, which use bridge structures that are 

outside the parameter range of current experimental data. These suggestions are not overly 

specific to bridge networks, but also have broader impacts on general infrastructure networks.

Indeed, general infrastructure network analysis can be enhanced using hierarchical structures to 

approach large-scale complex networks. The automated multi-scale network analysis approach 

presents significant computational efficiency improvements for the use of S-RDA for networks 

exhibiting a multi-scale cluster structure; however, this approach ought not to be used for regular 

or scale-free networks. It should be noted that such a hierarchical approach is completely novel 

to civil infrastructure network analysis, and presents significant benefit. However, as a network 

disconnection analysis, this approach uses specific source and terminal node pairings, and should 
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not be used for subjunctive representations, as these inherently change the cluster structure. The 

source and terminal nodes correspond to those evacuation/service corridors that are most critical. 

To generate a hierarchical structure for management, these should be placed so that they affect 

the hierarchical structure the least. Furthermore, the super-link representation can be made more 

efficient by placing a “super-node” inside the cluster. This provides the added benefit of using a 

linear rule to determine the number of super-links, as opposed to using a quadratic rule. Lastly, 

this approach ought to be tested on multimodal networks, e.g., water pipeline and electric 

transmission networks with connections at pump stations, using varying degrees of intermodal 

connectivity. The majority of network analyses neglect such interdependency, and, depending on 

the level of mode interaction, may be largely inaccurate. Further study of such multimodal 

networks is absolutely necessary.

Because many of the network outputs are sensitive to the hazard model, the most general model 

ought to be used. The hazard model currently relies on attenuation rules from the Chi-Chi 

earthquake records in Taiwan. These can be further improved for specific applications by the use 

of local data. Furthermore, the seismicity of an exact earthquake can be generalized by using 

hazard maps. Fortunately, the current methodology is fully capable of using this information. 

Both component-level importance and, to a lesser extent, the group-level importance are affected 

by an exact earthquake. Hazard maps will give more general information about network 

management strategies. As is necessary for all proposed numerical frameworks, a trial of an 

exact network application, possibly in coordination with a utility company or a state Department 

of Transportation, is required to suggest specific management solutions.

While the hazard model is a readily available input with typically low computational expense, 

the compiling of the component model is very expensive, computationally, for large 

infrastructure networks. This is especially true for the correlation terms, as they vary 

quadratically with the number of components. While parallelization may solve this issue, 

powerful computational resources may not always be available. With this end in mind, a 

statistical learning method may be able to estimate the majority of correlation terms without the 

need for additional expensive numerical integrations using a subset of correlation terms. The 

exact estimation procedure will probably be network specific, making such models necessary for 

each application. As a tentative approach, a regression, based on component inputs, that uses a 

stepwise elimination to create a parsimonious model, may be used. Data transformations to 

observe homoscedasticity and a division of data for fitting may also be required. Note that the 

proposed component model is not computationally expensive for small networks.

Lastly, the deterioration model, which is easily handled by the current methodology, must be 

updated in several ways. An analysis of deteriorating component sections should be attempted

specifically for pipeline models. The current approach is purely theoretical. Furthermore, the 

deterioration maps should be based on field data. A study focusing on how de-icing salts are 
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distributed is also necessary. More general coastlines must be investigated, i.e., bays, islands, 

peninsulas, isthmuses, etc. While the current methodology allows for a high degree of flexibility, 

the current list of potential benefits, border impacts, and improvements, as well as the need for 

further study is by no means exhausted.

6. CONCLUSION

This study has sought to address many issues relevant to infrastructure network analysis: 

(1) adaptive use of new information, (2) extending analytical, component-driven approaches 

based on structural reliability fundamentals to deteriorating bridge networks, (3) AHSIA with 

S-RDA, (4) the use of hierarchical structures for GIMs, and (5) deterioration effects. The 

adaptive IS approach has been found to be useful for a wide range of structural reliability 

problems. The deteriorating bridge network analysis was able to determine that, for the given 

network, the deterioration did not heavily affect which links ought to be serviced first. The 

AHSIA, particularly RI-AHSIA, along with S-RDA, presented significant reductions in 

computational complexity for certain network types, especially those which exhibited clusters. 

The hierarchical structures and GIMs were also able to suggest regional organization and 

management strategies. Lastly, the deterioration study described a way in which seaside 

deterioration may affect a city’s pipeline network.

Throughout this study, various network metrics were developed to create a risk-based framework 

that could be used to recommend optimal management strategies to decision makers. These 

suggestions extend to several resolutions: the component level, the group level, the hierarchical 

organization, and the likelihood of network disconnection. Depending on what decision makers 

principally desire, these suggestions can become more specific. Without such suggestions, the 

nature of the group management approach becomes somewhat unbounded.

While each of these points present advances in several types of knowledge, they can be further 

improved, especially for the more tentative studies. The approaches are applicable to existing, 

complex networks, and must be demonstrated on exact networks in conjunction with the 

participation of an appropriate management body. Such an application will require several uses 

of specific network data. Furthermore, this framework is general enough to analyze many kinds 

of civil infrastructure networks that are subject to seismicity.
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